

Fig. 2 a and b . Partitioning of Fe and Mg between garnet and ilmenite for synthesized samples (a) and for both natural and synthesized ilmenites (b). Symbols (b) as for Fig. 1
of compositional (Mg-value only) variation over the range of compositions of interest for natural ultramafic or basic rocks.

The temperature range over which K_{D} variation can be examined is not large in the experiments reported and further experiments are required at lower and higher temperatures to evaluate the K_{D} vs T relationship. It may be noted that $K_{D(\mathrm{Fe}, \mathrm{Mg})}^{\mathrm{ga}-\mathrm{cp} \mathrm{m}}$ has values of $4.7\left(900^{\circ} \mathrm{C}\right), 4.0\left(950^{\circ} \mathrm{C}\right), 3.0\left(1050^{\circ} \mathrm{C}\right)$ and $2.7\left(1100^{\circ} \mathrm{C}\right)$ at 30 kb (Raheim and Green, 1974) and the data presented herein shows that $K_{D(\mathrm{Fe}, \mathrm{Mg})}^{\mathrm{ilm}-\mathrm{ga}}$ is less sensitively dependent on temperature than $K_{D(\mathrm{Fe}, \mathrm{Mg})}^{\mathrm{ga}-\mathrm{cpx}}$. Our data

Table 5. Compositional features of coexisting synthesized garnets and ilmenites

Run conditions		Garnet			Ilmenite						
P (kbar)	$\begin{aligned} & T \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	$n^{\text {a }}$	$\frac{100 \mathrm{Mg}}{\mathrm{Mg}+\mathrm{Fe}} \mathrm{TiO}_{2}$	$\mathrm{Cr}_{2} \mathrm{O}_{3}$	$n^{\text {a }}$	$\frac{100 \mathrm{Mg}}{\mathrm{Mg}+\mathrm{Fe}}$	$\mathrm{Al}_{2} \mathrm{O}_{3}$	$\mathrm{Cr}_{2} \mathrm{O}_{3}$	SiO_{2}	CaO	$\mathrm{Na}_{2} \mathrm{O}$

Pyrolite less 40\% Olivine

$21-40$	1100	9	76.2	1.3	2.0	4	46.7	0.8	2.0	0.7	0.4	0.2
$21-31$	1000	7	74.4	0.8	1.8	7	43.1	0.6	1.8	0.7	0.3	0.2
30	950	5	75.7	0.6	2.1	3	45.7	0.5	2.1	0.2	0.2	-
Olivine basanite												
$25-30$	1050	3	53.4	1.5	-	4	23.1	0.8	-	0.8	0.5	0.3
25	900	5	41.2	1.0	-	1	15.2	0.7	-	1.0	0.8	0.3

a $n=$ No. of analyses obeying structural formulae and $\mathrm{S}_{1} \mathrm{O}_{2}$ (in ilmenite) restrictions, see text.
suggests that $\mathrm{Fe} / \mathrm{Mg}$ partition between ilmenite and clinopyroxene (or olivine, or orthopyroxene) is likely to be more useful as a petrological tool in deduction of P, T conditions of equilibration than $\mathrm{Fe} / \mathrm{Mg}$ partition between ilmenite and garnet. From Fig. 2 and the data of Raheim and Green (1974) $K_{D(\mathrm{Fe}, \mathrm{Mg})}^{\mathrm{ilm}-\mathrm{epx}} \approx 18.8$ at $900^{\circ} \mathrm{C}, 30 \mathrm{~kb}$ and $K_{D(\mathrm{Fe}, \mathrm{Mg})}^{\mathrm{ilm}-\mathrm{px}} \approx 10.8$ at $1100^{\circ} \mathrm{C}, 30 \mathrm{~kb}$.

In Table 3, we list analyses of coexisting phases from an ilmenite-bearing garnet peridotite from the Wesselton mine, South Africa. For this assemblage $K_{D(\mathrm{Fe}, \mathrm{Mg})}^{\mathrm{illm}-\mathrm{ga}}=4.26$ and $K_{D(\mathrm{Fe}, \mathrm{Mg})}^{\mathrm{ilm}-\mathrm{cpx}}=8.75$. Garnet and ilmenite from two Yakutian garnet peridotite xenoliths are listed in Table 4 and both ilmenites contain much higher $\mathrm{Fe}_{2} \mathrm{O}_{3}$ contents than the synthetic or Wesselton minerals. $K_{(\mathrm{Fe}}^{\mathrm{ilm}, \mathrm{ga}, \mathrm{Mg})}=5.98$ and 5.34 for these two assemblages if Fe^{+++}is allocated to ilmenite and garnet to satisfy structural formulae constraints. Boyd and Dawson (1973) list analyses of coexisting ilmenite and garnet from the Excelsior Pipe in which ilmenite has intermediate ($7-9 \%$) $\mathrm{Fe}_{2} \mathrm{O}_{3}$ contents and in which $K_{D\left(\mathrm{Fe}^{++}, \mathrm{Mg}\right)}^{\mathrm{ilm}-\mathrm{ga}}=5.1$ and 4.86 if Fe^{+++}is allocated to garnet according to structural formulae constraints (note that garnet then has minor $\mathrm{Fe}_{2} \mathrm{O}_{3}$ content). For the Wesselton garnet peridotite (Table 4), $\left.K_{D\left(\mathrm{Fe}^{+1}\right.}^{\text {ilm- }}, \mathrm{Mg}\right)=8.75$; for ilmenite ($8.6 \% \mathrm{Fe}_{2} \mathrm{O}_{3}$) and diopside (sub-calcic) in lamellar intergrowth from Uintjes Berg Pipe, $K_{D\left(\mathrm{Fe}^{+}+, \mathrm{Mg}\right)}^{\mathrm{ilm}-\mathrm{cx}} \simeq 8.02$ (Boyd and Nixon, 1973) and for ilmenite ($2.61 \% \mathrm{Fe}_{2} \mathrm{O}_{3}$) and diopside (sub-calcic) from Matsoku Pipe $K_{D\left(\mathrm{Fe}^{+}+, \mathrm{Mg}\right)}^{\mathrm{ilm}} \simeq 7.15$ (Akella and Boyd, 1973).

We conclude, from the experimental data and the comparison with natural ilmenite/garnet and ilmenite/clinopyroxene parageneses that $K_{D\left(\mathrm{Fe}^{++}, \mathrm{Mg}\right)}^{\mathrm{ilm}-\mathrm{g}}=4.0 \pm 0.5$ for a range of P, T conditions about $20-40 \mathrm{~kb}, 900-1100^{\circ} \mathrm{C}$ and is probably not sensitively dependent on P, T or Mg -value of the bulk composition. However, $K_{D\left(\mathrm{Fe}^{++}, \mathrm{Mg}\right)}^{\mathrm{illm}}$ is probably sensitively and positively correlated with $\mathrm{Fe}_{2} \mathrm{O}_{3}$ substitution in ilmenite. It appears probable that $K_{\left(\mathrm{Fe}^{+7}, \mathrm{Mg}\right)}^{\mathrm{im} \mathrm{cpx}}$ is more sensitively dependent on temperature and it is of interest that two independent parameters (the more sub-calcic pyroxene and lower $\left.K_{D(\mathrm{Fe}} \mathrm{ilm}, \mathrm{Mg}\right)$, indicate that the Matsoku $\mathrm{Ol}+\mathrm{Cpx}+\mathrm{Opx}+$ Ilm assemblage (Akella and Boyd, 1973) is a higher temperature assemblage than the Wesselton example (Table 3).

